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LETTER TO THE EDITOR

Models of excitations in CuGeO3
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Oxford Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

Received 4 January 1996

Abstract. The excitations of CuGeO3 are discussed using a model in which pairs of Cu spins
are in a spin-singlet state and excitations are made to the excited triplet states. Unless the
exchange constants are known independently, the dispersion curves cannot be distinguished
experimentally from those of conventional spin waves. The models and conventional spin-wave
theory give very different values for the exchange constants which are calculated. Extensions
of the calculations to include multi-excitation processes and other systems are suggested.

Ever since Haseet al (1993) reported that CuGeO3 undergoes a spin–Peierls transition, there
has been renewed interest in the properties of materials undergoing this type of transition
and whether spin–Peierls states might occur in other materials. In this letter we discuss
the nature of the excitations from a spin–Peierls state and the extent to which they can
be distinguished from the excitations of a conventional antiferromagnet. The excitations
of CuGeO3 were measured by Nishiet al (1994) and by Regnaultet al (1995) using
neutron scattering techniques and were interpreted in terms of the linear spin-wave theory
for antiferromagnets. We show that the measurements can also be interpreted in terms of a
linearized theory of the triplet excitations from a dimerized spin–Peierls state, and deduce
the values for the exchange constants of this model.

Figure 1. The bc plane of CuGeO3 showing only the
Cu atoms. The rectangular boxes show the dimerized
pairs, and the exchange constants are listed between the
appropriate Cu atoms.
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Above 14 K, CuGeO3 has an orthorhombic crystal structure. There are strong
antiferromagnetic exchange interactions between the Cu atoms in thec-direction due to
the O ligands between them, leading to a nearly one-dimensional magnetic system. Below
14 K, new Bragg reflections with indices (h/2, k, `/2) were observed by Kamimuraet al
(1994) and by Pougetet al (1994) and the low-temperature structure was solved by Hirota
et al (1994) and is shown in figure 1. The Cu atoms along thec-axis chains are dimerized
leading to two different intra-chain exchange constants. Haseet al (1993) showed that this
dimerization results in a spin–Peierls structure below 14 K. which has no average magnetic
moment but pairs of Cu (S = 1

2) spins forming a spin-singlet state.
The magnetic model that we have used for CuGeO3 is illustrated in figure 1 with

exchange interactions between theS = 1
2 spins having Heisenberg character. The intra-

chain interactions are described by the Hamiltonian

H =
∑

`

J0S(2`) · S(2` + 1) +
∑

`

J1S(2` + 1) · S(2` + 2) (1)

where we shall assumeJ0 > J1 and` is the index of the dimerized unit cell along the chain.
The model also includes Heisenberg exchange interactions between nearest neighbours in
the a-direction,J2, andb-direction,J3, as shown in figure 1.

In the spin–Peierls state the two Cu spins at 2` and 2̀ + 1 form a spin singlet,φg(`),
with T (`) = |S(2`) + S(2` + 1)| = 0, and an energy of− 3

4J0. The excited states of the
pair are a spin triplet of states with an energy above the ground state ofJ0, T (`) = 1, and
wavefunctionsφ−1(`), φ0(`) andφ1(`) where the indices give the eigenvalues ofTz(`) in the
arbitraryz-direction. The excitations of the linear chain—equation (1)—have been discussed
by several authors using Hartree–Fock techniques and computer simulations as reviewed by
Bonner and Blotze (1982). We shall use the pseudo-boson techniques developed by Grover
(1964) and others but extended to apply to the spin–Peierls state. The method proceeds by
introducing operatorsa+

−1(`), a
+
0 (`) and a+

1 (`) which excite the spins in thèth unit cell
to one of the excited triplet states of pair` while analogous annihilation operators destroy
these excitations. When the Hamiltonian is rewritten in terms of these operators the terms
involving J0 become

H1 = − 3
4J0 + J0

∑
`

(
a+

−1(`)a−1(`) + a+
0 (`)a0(`) + a+

1 (`)a1(`)
)
. (2)

The second term in equation (1) can also be rewritten in terms of these operators but the
results are both more complex and more approximate. The operatorSz(2`) has a matrix
element of1

2 connecting the statesφg(`) and φ0(`) while that ofSz(2` + 1) has a matrix
element of− 1

2, so within this manifold

Sz(2`) = 1
2

(
a+

0 (`) + a0(`)
) + · · · O(a3) (3)

Sz(2` + 1) = − 1
2

(
a+

0 (`) + a0(`)
) + · · · O(a3).

Using these results theSz-part of the second term in equation (1) becomes

H2 = − 1
4J1

∑
`

(
a+

0 (`) + a0(`)
) (

a+
0 (` + 1) + a0(` + 1)

)
. (4)

Similar expressions can be obtained for theSx- andSy-terms and these involvea1(`) and
a−1(`).

The energy of the excitations can now be found from equations (2) and (4) for the
Tz = 0 part of the triplet states by diagonalizing the pseudo-boson Hamiltonian to give

(h̄ω(q))2 = J0 (J0 − 2J (q)) (5)
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Figure 2. The dispersion relations for the excitations in CuGeO3 calculated for the model
illustrated in figure 1. The solid points show the energies measured by Nishiet al (1994).

where, if we extend the analysis to include the inter-chain terms in the model,

J (q) = 1
2J1 cos(2q · c) + J2 cos(q · a) cos(q · c) + J3 cos(q · b/2) cos(q · c). (6)

This result can only be valid if the structure is stable against these excitations, which implies
that

J0 > J1 + 2|J2| + 2|J3|.
Equations (5) and (6) were deduced for the excitations to theTz = 0 part of the triplet.
Since the magnetic system is isotropic in spin space, the other two branches must have
identical excitation energies, so the predicted excitation spectrum is a triplet branch, as was
shown experimentally by Fujitaet al (1995) by observing the splitting of the excitations on
application of a magnetic field. In figure 2 we show the dispersion relation calculated with
the exchange constant chosen to have the values

J0 = 11.5 ± 0.2 meV

J1 = 9.9 ± 0.2 meV

J2 = 0 ± 0.03 meV

J3 = 0.63± 0.05 meV

which were chosen to give a good description of the experimental measurements by Nishi
et al (1994) and Regnaultet al (1995).

The exchange constants satisfy the stability criterion. The difference in the exchange
constant along the chain direction due to the dimerization is 14% even though the difference
in the atomic distances is only 0.85% (Hirotaet al 1994), showing that the exchange
constants are very much dependent upon small changes in the local environment. The
constantJ2 is small but possibly ferromagnetic showing that the magnetic system would
favour a ferromagnetic arrangement of the dimers in the chains separated by the lattice
constanta as found for the magnetic structures of doped CuGeO3 by Lussier et al
(1995). The antiferrodistortive coupling between the chains separated in thea-direction
of pure CuGeO3 presumably arises because the coupling to the lattice gives the minimum
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of the total—lattice and magnetic—energy for the wavevector in reciprocal-lattice units
q = ( 1

2, 1, 1
2) rather than for the wavevector favoured by the purely magnetic system,

q = (0, 1, 1
2).

Figure 3. The magnitude of the〈SzSz〉 correlation functions for various directions in reciprocal
space (solid line). The dashed line shows2

3〈SxSx〉 calculated using the linearized spin-wave
model described in the text.

The model can also be used to calculate the intensity of the neutron scattering as a
function of the wavevector transfer,Q. The amplitude of the scattering depends for the
Tz = 0 excitations on the amplitude∑

`

Sz(`) exp iQ · R(`).

This expression is transformed to creation and annihilation operators by using equation (3)
and summing over the dimerized pairs of spins. The creation operators are evaluated to



Letter to the Editor L183

give the〈SzSz〉 part of the scattering cross-section as

1
2 sin2

(
Q · c

2

)
(J0 − h̄ω(q))2 /

(
h̄ω(q) (J0 − J (q) − h̄ω(q))

)
(7)

where we have assumed that the change in the atomic positions is negligible on dimerization.
These intensities are illustrated in figure 3 as functions of the wavevector, and the intensity
is zero whenever theQc = 2nπ/c, due to the form factor of the dimers.

It is interesting to compare these results with those for a simple antiferromagnetic
ordering. The molecular-field energy in the fully antiferromagnetically ordered state is
− 1

4(J0 + J1 + 2J2 + 2J3) for each pair of spins, which for the parameters of CuGeO3 gives
a state that is less stable than the spin–Peierls state (− 3

4J0) discussed above. Following
Nishi et al (1994), the excitations can be modelled ifJ0 andJ1 are taken to be equal atj0

and a single-site anisotropy,EA, is introduced. Linearized spin-wave theory then gives the
spin-wave energies as

(h̄ωsw(q))2 = (EA + j0 + j2 + j3)
2 −

(
j0 cos(q · c) + j2 cos(q · a) + j3 cos

(
q · b

2

))
(8)

where we have denoted the exchange constants byj0, j2 andj3. At first sight this expression
is very different from that given by equations (4) and (5) and so a measurement of the
excitation frequencies might provide a way of distinguishing between the different ground
states and models. There is, however, no independent way of determining the exchange
constants, and equation (8) can be rewritten as

(h̄ωsw(q))2 =
(

(EA + j0 + j2 + j3)
2 − j2

0

2

)
− j2

0

2
cos(2q · c)

−2j0 cos(q · c)

(
j2 cos(q · a) + j3 cos

(
q · b

2

))
−

(
j2 cos(q · a) + j3 cos

(
q · b

2

))2

(9)

where it is apparent that the first three terms have exactly the same structure as equations (5)
and (6) and with appropriate choice of the exchange constants become identical. Indeed
we have calculated the energies given by equation (8) withj0 = 15.08 meV,j2 = 0, j3 =
0.48 meV andEA = 0.136 meV, which parameters give energies for the excitations with
q = (0, 0, 0), (0, 0, 0.25) and (0, 1, 0) identical to those shown in figure 2. The results for
the energies of the excitations for the two models then differ by no more than 0.03 meV
for any wavevector examined. Clearly it is not possible to distinguish between these two
models in figure 2 or by measuring the excitation energies, unless there is an independent
way of determining the exchange constants. Despite this similarity, the values of the intra-
chain exchange constants obtained from the spin-wave model are approximately

√
2 larger

than those of the spin-triplet model. This difference is apparent if the expressions for the
maximum energies of the excitations are compared. For the singlet–triplet model, this energy
is approximately

√
2J0 and for the spin-wave model it isj . This can also be compared with

the resultπJ/2 for the maximum energy of theS = 1
2 antiferromagnetic chain obtained

by des Cloizeaux and Pearson (1962). Since
√

2 andπ/2 are fairly similar it suggests that
the ground state of the antiferromagnetic chain is composed largely of spin singlets and is
closer to a spin–Peierls state than to the fully aligned antiferromagnetic state.
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The intensity of the scattering from the excitations has been calculated using the spin-
wave model, and in figure 3 the results for2

3〈SxSx〉 are compared with those for the singlet–
triplet model. The results are strikingly similar except for whenQc = 0, figure 3, ornc∗ in
an extended-zone scheme when, in the singlet–triplet model, the form factor of the dimer,
sin2(Q · c/2) of equation (7) is zero, while the corresponding intensity of the spin-wave
model is small but non-zero. In a more refined calculation the zero of the intensity would
enable the separation of the dimers to be determined and would not occur precisely atnc∗

but would be displaced due to the dimerization. It would therefore be of interest to measure
the intensities of the excitations close to the ‘nuclear’ lattice points as these differ for the
two models, but the intensities are very weak and difficult to measure.

Apart from these differences in the intensities, the clearest difference between the
excitations from a spin-singlet state and those from an antiferromagnetic state is that
the former are a triplet of states and the latter a doublet and that they can be split by
a magnetic field as shown by Fujitaet al (1995) for CuGeO3. Another difference is in the
angular dependence of the intensities, because the spin-triplet intensities are the same for
the 〈SxSx〉, 〈SySy〉 and 〈SzSz〉 correlation functions, whereas if the spin direction for the
antiferromagnetic state is thez-direction, the spin-wave excitations occur only in the〈SxSx〉
and 〈SySy〉 correlation functions. In order to normalize for this difference in figure 3 we
plotted two thirds of the intensity calculated for the〈SxSx〉 correlation function. In practice
the scattering is composed of only the spin components perpendicular to the wavevector
transfer,Q, and so for the spin-wave intensities the appropriate factor is1

2(1 + Q2
z/Q

2)

instead of 2
3〈SxSx〉. This angular dependence of the intensities arises directly from the

broken symmetry of the antiferromagnetic phase.
The spin–Peierls singlet–triplet model can be extended in several different ways. One

is to include the effects of many excitation processes on the scattering. The expansion of
the Sz-operators in equation (3) has only included the leading linear terms but the next
terms are of third order in the boson operators. It therefore follows that there are no direct
two-excitation processes and that the leading many-excitation process extends in energy up
to three times the maximum energy of equations (5) and (6). Also the dimer form factor
sin(Q · c/2) applies to the multi-excitation processes and so these are predicted to have
negligible intensity whenQc = 2πn/c. We plan to perform detailed calculations, but both
predictions are consistent with recent measurements made by Araiet al (1995).

Secondly, the theory can be extended to the region where neither the spin–Peierls nor
the fully aligned antiferromagnetic state is the ground state.

J0 < J1 + 2J2 + 2J3 < 2J0.

The ground state is then an admixture of the dimer ground stateφg and of one of the triplet
states and has a net ordered antiferromagnetic moment, but that moment is considerably
less than the total spin (Bleaney 1963). The ordered moment splits the degeneracy of the
triplet of excited states leading to a pair of transverse spin waves and a singlet longitudinal
mode. Such a model might be applicable to systems where there is a reduced moment and
in which there is one particular strong exchange interaction.

In conclusion we have calculated the excitation spectrum of CuGeO3 using a singlet
spin ground state and a triplet of excited states. The results are very difficult to distinguish
experimentally from those of linearized spin-wave theory. They do nevertheless give a
good description of the excitations in CuGeO3 and allow us to make a number of predictions
about the intensities and the properties of the excitations. The theory can be extended and is
applicable to other systems in which there is a large difference in the exchange interactions.
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